Negating a proposition
General rules:
- ¬∀xϕ≡∃xϕ
- ¬∃xϕ≡∀x¬ϕ
- ¬∀x(ϕ→ψ)≡∃x(ϕ∧¬ψ)
- ¬∃x(ϕ∧ψ)≡∀x(ϕ→¬ψ)
- ¬(ϕ∧ψ)≡¬ϕ∨¬ψ
- ¬(ϕ∨ψ)≡¬ϕ∧ψ
- ¬(ϕ→ψ)≡ϕ∧¬ψ
Example
Proof of:
¬∃x∈N.∃y∈N.gcd(x,y)=1 and x2=2y2.
Suppose there exists x∈N and y∈N s.t. x2=2y2.
Thus, x must be an even number and we can assume x=2x0.
Now, we have y2=2x02.
Thus, y must be an even number too and we can assume y=2y0.
Therefore, gcd(x,y)=1.
Qed.
Proof step: In order to prove ¬∃x∈N.∃y∈N.gcd(x,y)=1 and x2=2y2, it suffices to prove that if x∈N, y∈N and x2=2y2 then gcd(x,y)=1.
Logic: The negation of ∃x(ψ1∧∃y(ψ2∧ψ3∧χ)) is ∀x(ψ1→∀y(ψ2→(ψ3→¬χ))).
证明逻辑:
⟸⟸⟸⟸⟸Φ⊢¬∃x(ψ1∧∃y(ψ2∧(ψ3∧χ)))Φ⊢∀x(ψ1→∀y(ψ2→(ψ3→¬χ)))Φ⊢ψ1→∀y(ψ2→(ψ3→¬χ))(x does not freely occur in Φ)Φ,ψ1⊢∀y(ψ2→(ψ3→¬χ))Φ,ψ1⊢ψ2→(ψ3→¬χ)(y does not freely occur in Φ,ψ1)Φ,ψ1,ψ2,ψ3⊢¬χ
Important properties of logic equivalence and consequence relation
Theorem 4
- ∀x (ϕ∧ψ)≡∀xϕ∧∀xψ
- ∀xϕ∨∀xψ⊨∀x (ϕ∨ψ)
- ∃x (ϕ∨ψ)≡∃x ϕ∨∃x ψ
- ∃x (ϕ∧ψ)⊨∃x ϕ∧∃x ψ
- If x does not freely occur in ϕ, ∃x(ϕ∧ψ)≡ϕ∧∃xψ
- If x does not freely occur in ϕ, ∀x(ϕ→ψ)≡ϕ→∀xψ
Proof: For any J
[[∀x(ϕ→ψ)]]J=T
⟺ for any a in J's domain, s.t. [[ϕ→ψ]]J=T
⟺ for any a in J's domain, s.t. [[ϕ]]J[x↦a]=F or [[ψ]]J[x↦a]=T
⟺ for any a in J's domain, s.t. [[ϕ]]J=F or [[ψ]]J[x↦a]=T
⟺ [[ϕ]]J=F or for any a in J's domain, s.t. [[ψ]]J[x↦a]=T
⟺ [[ϕ→∀xψ]]J=T
Qed
Theorem 5
Inference Rules and Proof Theory
Proof theory is an independent theory to the semantic theory.
Definition 6 (The natural deduction system). Φ⊢ψ (Φ derives ψ) if and only if it can be established by the following proof rules in finite steps:
-
∀xϕ⊢ϕ[x↦t]; ϕ[x↦t]⊢∃xϕ;
-
If Φ⊢ψ and x does not freely occur in Φ, then Φ⊢∀xψ.
-
If Φ,ψ⊢χ and x does not freely occur in Φ or χ, then Φ,∃xψ⊢χ.
-
ϕ,ψ⊢ϕ∧ψ; ϕ∧ψ⊢ϕ; ϕ∧ψ⊢ψ
-
ϕ⊢ϕ∨ψ; ψ⊢ϕ∨ψ
-
If Φ,ϕ1⊢ψ and Φ,ϕ2⊢ψ, then Φ,ϕ1∨ϕ2⊢ψ
-
Φ⊢ψ∨¬ψ
-
Φ,ψ,¬ψ⊢χ
-
If ϕ∈Φ, then Φ⊢ϕ
-
If Φ⊆Ψ and Φ⊢ϕ, then Ψ⊢ϕ
-
If Φ⊢ψ and Φ⊢ψ→χ, then Φ⊢χ.
-
If Φ,ψ⊢χ, then Φ⊢ψ→χ.