Negating a proposition

General rules:

  • ¬xϕxϕ̸\lnot \forall x \phi \equiv \exists x \not \phi
  • ¬xϕx¬ϕ\lnot \exists x \phi \equiv \forall x \lnot \phi
  • ¬x(ϕψ)x(ϕ¬ψ)\lnot \forall x(\phi \to \psi) \equiv \exists x(\phi \land \lnot \psi)
  • ¬x(ϕψ)x(ϕ¬ψ)\lnot \exists x(\phi \land \psi) \equiv \forall x(\phi \to \lnot \psi)
  • ¬(ϕψ)¬ϕ¬ψ\lnot (\phi \land \psi) \equiv \lnot \phi \lor \lnot \psi
  • ¬(ϕψ)¬ϕψ\lnot (\phi \lor \psi)\equiv \lnot \phi \land \psi
  • ¬(ϕψ)ϕ¬ψ\lnot (\phi\to \psi)\equiv \phi \land \lnot \psi

Example
Proof of:

¬xN.yN.gcd(x,y)=1 and x2=2y2.\lnot \exists x \in \mathbb{N}. \exists y \in \mathbb{N}. \gcd(x, y) = 1 \text{ and } x^2 = 2y^2.

Suppose there exists xNx \in \mathbb{N} and yNy \in \mathbb{N} s.t. x2=2y2x^2 = 2y^2.
Thus, xx must be an even number and we can assume x=2x0x = 2x_0.
Now, we have y2=2x02y^2 = 2x_0^2.
Thus, yy must be an even number too and we can assume y=2y0y = 2y_0.
Therefore, gcd(x,y)1\gcd(x, y) \neq 1.
Qed.

Proof step: In order to prove ¬xN.yN.gcd(x,y)=1 and x2=2y2\lnot \exists x \in \mathbb{N}. \exists y \in \mathbb{N}. \gcd(x, y) = 1 \text{ and } x^2 = 2y^2, it suffices to prove that if xNx \in \mathbb{N}, yNy \in \mathbb{N} and x2=2y2x^2 = 2y^2 then gcd(x,y)1\gcd(x, y) \neq 1.

Logic: The negation of x(ψ1y(ψ2ψ3χ))\exists x (\psi_1 \land \exists y (\psi_2 \land \psi_3 \land \chi)) is x(ψ1y(ψ2(ψ3¬χ)))\forall x (\psi_1 \rightarrow \forall y (\psi_2 \rightarrow (\psi_3 \rightarrow \lnot \chi))).

证明逻辑:

Φ¬x(ψ1y(ψ2(ψ3χ)))    Φx(ψ1y(ψ2(ψ3¬χ)))    Φψ1y(ψ2(ψ3¬χ))(x does not freely occur in Φ)    Φ,ψ1y(ψ2(ψ3¬χ))    Φ,ψ1ψ2(ψ3¬χ)(y does not freely occur in Φ,ψ1)    Φ,ψ1,ψ2,ψ3¬χ\begin{aligned} &\Phi\vdash\lnot \exists x(\psi_1\land\exists y(\psi_{2}\land(\psi_{3}\land\chi)))\\ \impliedby& \Phi\vdash\forall x(\psi_1\to \forall y (\psi_{2}\rightarrow(\psi_{3}\rightarrow \lnot \chi)))\\ \impliedby& \Phi\vdash \psi_1\to \forall y (\psi_{2}\rightarrow(\psi_{3}\rightarrow \lnot \chi)) \quad (x \text{ does not freely occur in } \Phi) \\ \impliedby&\Phi,\psi_{1}\vdash\forall y (\psi_{2}\rightarrow(\psi_{3}\rightarrow \lnot \chi))\\ \impliedby&\Phi,\psi_{1}\vdash \psi_{2}\rightarrow(\psi_{3}\rightarrow \lnot \chi) \quad (y \text{ does not freely occur in } \Phi, \psi_1) \\ \impliedby&\Phi,\psi_{1}, \psi_2, \psi_3 \vdash \lnot \chi \end{aligned}

Important properties of logic equivalence and consequence relation

Theorem 4

  • x (ϕψ)xϕxψ\forall x\ (\phi \wedge \psi) \equiv \forall x\phi \wedge \forall x\psi
  • xϕxψx (ϕψ)\forall x\phi \vee \forall x\psi \models \forall x\ (\phi \vee \psi)
  • x (ϕψ)x ϕx ψ\exists x\ (\phi \vee \psi) \equiv \exists x\ \phi \vee \exists x\ \psi
  • x (ϕψ)x ϕx ψ\exists x\ (\phi \wedge \psi) \models \exists x\ \phi \wedge \exists x\ \psi
  • If xx does not freely occur in ϕ\phi, x(ϕψ)ϕxψ\exists x(\phi \wedge \psi) \equiv \phi \wedge \exists x\psi
  • If xx does not freely occur in ϕ\phi, x(ϕψ)ϕxψ\forall x(\phi \rightarrow \psi) \equiv \phi \rightarrow \forall x\psi
    Proof: For any J\mathcal{J}
    x(ϕψ)J=T\llbracket \forall x (\phi\to \psi) \rrbracket_{\mathcal{J}} = T
        \iff for any aa in J\mathcal{J}'s domain, s.t. ϕψJ=T\llbracket \phi\to \psi \rrbracket_{\mathcal{J}} = T
        \iff for any aa in J\mathcal{J}'s domain, s.t. ϕJ[xa]=F\llbracket \phi \boldsymbol{\rrbracket}_\mathcal{J[x\mapsto a]}=F or ψJ[xa]=T\llbracket \psi \rrbracket_{\mathcal{J}[x\mapsto a]} = T
        \iff for any aa in J\mathcal{J}'s domain, s.t. ϕJ=F\llbracket \phi \boldsymbol{\rrbracket}_\mathcal{J}=F or ψJ[xa]=T\llbracket \psi \rrbracket_{\mathcal{J}[x\mapsto a]} = T
        \iff ϕJ=F\llbracket \phi \boldsymbol{\rrbracket}_\mathcal{J}=F or for any aa in J\mathcal{J}'s domain, s.t. ψJ[xa]=T\llbracket \psi \rrbracket_{\mathcal{J}[x\mapsto a]} = T
        \iff ϕxψJ=T\llbracket \phi\to \forall x\psi \rrbracket_{\mathcal{J}} = T
    Qed

Theorem 5

  • xyϕyxϕ\forall x\forall y\phi \equiv \forall y\forall x\phi
  • If xx does not freely occur in ϕ2\phi_{2} and yy does not freely occur in ϕ1\phi_{1}, then x(ϕ1y(ϕ2ψ))y(ϕ2x(ϕ1ψ))\forall x(\phi_{1} \rightarrow \forall y(\phi_{2} \rightarrow \psi)) \equiv \forall y(\phi_{2} \rightarrow \forall x(\phi_{1} \rightarrow \psi))
    Proof:

    x(ϕ1y(ϕ2ψ))xy(ϕ1(ϕ2ψ))xy(ϕ1ϕ2ψ)xy(ϕ2(ϕ1ψ))yx(ϕ2(ϕ1ψ))y(ϕ2x(ϕ1ψ))\begin{aligned} &\forall x(\phi_{1} \rightarrow \forall y(\phi_{2} \rightarrow \psi)) \\ \equiv & \forall x \forall y (\phi_1 \to (\phi_2 \to \psi)) \\ \equiv & \forall x\forall y(\phi_1 \land \phi_2\to \psi) \\ \equiv &\forall x\forall y(\phi_2\to (\phi_1\to \psi))\\ \equiv &\forall y\forall x(\phi_2\to (\phi_1\to \psi))\\ \equiv &\forall y(\phi_2\to \forall x(\phi_1\to \psi))\\ \end{aligned}

  • xyϕyxϕ\exists x\exists y\phi \equiv \exists y\exists x\phi
  • If xx does not freely occur in ϕ2\phi_{2} and yy does not freely occur in ϕ1\phi_{1}, then x(ϕ1y(ϕ2ψ))y(ϕ2x(ϕ1ψ))\exists x(\phi_{1} \land \exists y(\phi_{2} \land \psi)) \equiv \exists y(\phi_{2} \land \exists x(\phi_{1} \land \psi))
  • xyϕyxϕ\exists x\forall y\phi \models \forall y\exists x\phi

Inference Rules and Proof Theory

Proof theory is an independent theory to the semantic theory.

Definition 6 (The natural deduction system). Φψ\Phi \vdash \psi (Φ\Phi derives ψ\psi) if and only if it can be established by the following proof rules in finite steps:

  • xϕϕ[xt]\forall x \phi \vdash \phi[x \mapsto t]; ϕ[xt]xϕ\quad \phi[x \mapsto t] \vdash \exists x \phi;

  • If Φψ\Phi \vdash \psi and xx does not freely occur in Φ\Phi, then Φxψ\Phi \vdash \forall x \psi.

  • If Φ,ψχ\Phi, \psi \vdash \chi and xx does not freely occur in Φ\Phi or χ\chi, then Φ,xψχ\Phi, \exists x \psi \vdash \chi.

  • ϕ,ψϕψ\phi, \psi \vdash \phi \land \psi; ϕψϕ\quad \phi \land \psi \vdash \phi; ϕψψ\quad \phi \land \psi \vdash \psi

  • ϕϕψ\phi \vdash \phi \lor \psi; ψϕψ\quad \psi \vdash \phi \lor \psi

  • If Φ,ϕ1ψ\Phi, \phi_1 \vdash \psi and Φ,ϕ2ψ\Phi, \phi_2 \vdash \psi, then Φ,ϕ1ϕ2ψ\Phi, \phi_1 \lor \phi_2 \vdash \psi

  • Φψ¬ψ\Phi \vdash \psi \lor \neg \psi

  • Φ,ψ,¬ψχ\Phi, \psi, \neg \psi \vdash \chi

  • If ϕΦ\phi \in \Phi, then Φϕ\Phi \vdash \phi

  • If ΦΨ\Phi \subseteq \Psi and Φϕ\Phi \vdash \phi, then Ψϕ\Psi \vdash \phi

  • If Φψ\Phi \vdash \psi and Φψχ\Phi \vdash \psi \rightarrow \chi, then Φχ\Phi \vdash \chi.

  • If Φ,ψχ\Phi, \psi \vdash \chi, then Φψχ\Phi \vdash \psi \rightarrow \chi.