代码内容来自PyTorch官网
Loading a Dataset
首先展示一个从Fashion-MNIST中加载数据集的例子
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 import torchfrom torch.utils.data import Datasetfrom torchvision import datasetsfrom torchvision.transforms import ToTensorimport matplotlib.pyplot as plttraining_data = datasets.FashionMNIST( root="data" , train=True , download=True , transform=ToTensor() ) test_data = datasets.FashionMNIST( root="data" , train=False , download=True , transform=ToTensor() )
Iterating and Visualizing the Dataset
我们可以像 list 一样使用 Datasets : training_data[index].
我们可以用 matplotlib 展示部分数据集中的数据
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 labels_map = { 0 : "T-Shirt" , 1 : "Trouser" , 2 : "Pullover" , 3 : "Dress" , 4 : "Coat" , 5 : "Sandal" , 6 : "Shirt" , 7 : "Sneaker" , 8 : "Bag" , 9 : "Ankle Boot" , } figure = plt.figure(figsize=(8 , 8 )) cols, rows = 3 , 3 for i in range (1 , cols * rows + 1 ): sample_idx = torch.randint(len (training_data), size=(1 ,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off" ) plt.imshow(img.squeeze(), cmap="gray" ) plt.show()
Creating a Custom Dataset for your files
一个自定义的数据集类(继承自 Dataset)需要有 __init__,__len__ 和 __getitem__ 这三个函数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 import osimport pandas as pdfrom torchvision.io import read_imageclass CustomImageDataset (Dataset ): def __init__ (self, annotations_file, img_dir, transform=None , target_transform=None ): self.img_labels = pd.read_csv(annotations_file) self.img_dir = img_dir self.transform = transform self.target_transform = target_transform def __len__ (self ): return len (self.img_labels) def __getitem__ (self, idx ): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0 ]) image = read_image(img_path) label = self.img_labels.iloc[idx, 1 ] if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label
说明:
Preparing your data for training with DataLoaders
DataLoaders 用于将数据集变成可迭代对象,相当于是处理数据,让训练更加方便。
1 2 3 4 from torch.utils.data import DataLoadertrain_dataloader = DataLoader(training_data, batch_size=64 , shuffle=True ) test_dataloader = DataLoader(test_data, batch_size=64 , shuffle=True )
Iterate through the DataLoader
1 2 3 4 5 6 7 8 9 10 11 train_features, train_labels = next (iter (train_dataloader)) print (f"Feature batch shape: {train_features.size()} " )print (f"Labels batch shape: {train_labels.size()} " )img = train_features[0 ].squeeze() label = train_labels[0 ] plt.imshow(img, cmap="gray" ) plt.show() print (f"Label: {label} " )
PyTorch Datasets & DataLoaders 代码分析