要证明之前用的逻辑推理规则是合理的。
Theorem 1.
ϕ[x↦t]⊨∃xϕ
where ϕ[x↦t] means substituting every free occurrence of x in ϕ with t.
Example2.
Theorem1 的例子:
P(c)⊨∃x(P(x))
考虑一个更复杂一点的例子:
P(c)∧Q(g(c),c)⊨∃x(P(x)∧Q(g(x),c))
In order to prove theorem 1, we need to use the following property.
因为 Theorem1 引入了一个新的符号 ϕ[x↦t],这个符号表示在语法上把 ϕ 中的 x 替换成 t。(不包括 ∀x,∃x 包括到的这些 x)
Claim 3.
[[ϕ[x↦t]]]J=[[ϕ]]J[x↦[[t]]J]
Claim3 可能有点复杂,再举两个例子:
Example 4.
- Let ϕ=P(x) and t=c. Then, [[P(c)]]J=[[P(x)]]J[x↦J(c)]
- Let ϕ=P(x) and t=f(y,c). Then, [[P(f(y,c))]]J=[[P(x)]]J[x↦[[f(y,c)]]J].
上面的 Claim3 直接作为结论来用,不做证明。然后使用 Claim3 来证明 Theorem1:
Proof
For any J, if [[ϕ↦t]]J=T, then [[ϕ]]J[x↦[[t]]J]=T, so [[∃xϕ]]J=T.
Qed.
再考虑一个类似的结论,同样可以用 Claim3 证明。
Theorem 5.
∀xϕ⊨ϕ[x↦t]
Proof
If J is an interpretation, [[∀xϕ]]J=T, then for any a in J's domain, [[ϕ]]x↦a=T.
[[ϕ[x↦t]]]J=[[ϕ]]J[x↦[[t]]J]=T.
Qed.
在之前的逻辑推理中,用过这样的结论:
If Φ,ψ⊢χ and x not mentioned in Φ, then Φ⊢∀x(ψ→χ).
上述结论可以抽象为如下结论
Theorem 7.
- If Φ⊨ψ and x does not freely occur in Φ, then Φ⊨∀xψ
Remark: “does not freely occur” is very important.
举个例子:
Φ={P(x)},ψ=P(x),那么有 Φ⊨ψ,但是 Φ⊨∀xψ。
想要证明 Theorem7,需要引入以下 Claim
Claim9
If Φ does not mention x
[[ϕ]]J=[[ϕ]]J[x↦a]
接下来用 Claim9 证明 Theorem7
Proof
For any J s.t. for any ϕ∈Φ,[[ϕ]]J=T.
For any a in J′s domain, and any ϕ∈Φ, [[ϕ]]J[x↦a]=[[ϕ]]J=T
So [[ψ]]J[x↦a]=T (Φ⊨ψ), [[∀xψ]]J=T
Qed.
Theorem7
Theorem7 还有一个对称的说法
- If Φ,ψ⊨χ, and x is not mentioned in Φ and χ, then Φ,∃xψ⊨χ
Proof
Suppose J is an interpretation s.t. (1) For any ϕ∈Φ, [[ϕ]]J=T; (2) [[∃xψ]]J=T
So there exists a s.t. [[ψ]]J[x↦a]
For any ϕ∈Φ, [[ϕ]]J[x↦a]=[[ϕ]]J=T
Thus [[χ]]J[x↦a]=T (because Φ,ψ⊨χ)
[[χ]]J=[[χ]]J[x↦a]=T.