目前的一阶逻辑有一个局限,就是在同一种解释 J 下,所有的量词表示的的论域都是相同的。比如 ∀x,∃y,在解释的时候都是同一个论域 A。但是在日常的数学语言中,各种范围并不统一。比如:Every even integer n≥4 is a sum of two prime numbers. 这个命题不能直接改写成一阶逻辑的样子,因此命题可以先改写成 For every even integer n≥4, there exist two prime numbers x and y such that n=x+y. 但是各个变量的范围依然不尽相同。
Example
再考虑更极端一点的例子,当“如果-那么”变成实质蕴涵,则会导致所有的虚拟语气都变成真命题。这也是不合理的。
Example
Is it true or false?
Symbols: Unary predicates E and O, binary predicate L and S={E,O,L}.
Proposition: ∀(x:E(x)∧O(x)).L(x,x).
Domain: Z
S-structure: A=(Z,α) where
for any a∈Z, α(E,a)=T iff. a is an even number;
for any a∈Z, α(O,a)=T iff. a is an odd number;
for any a,b∈Z, α(L,a,b)=T iff. a<b.
For any β and J=(A,β), [[∀(x:E(x)∧O(x)).L(x,x)]]J=T
Is it true or false?
Symbols: Unary predicates E and O, binary predicate L and S={E,O,L}.
Proposition: ∃(x:E(x)∧O(x)).L(x,x).
Domain: Z
S-structure: A=(Z,α) where
for any a∈Z, α(E,a)=T iff. a is an even number;
for any a∈Z, α(O,a)=T iff. a is an odd number;
for any a,b∈Z, α(L,a,b)=T iff. a<b.
For any β and J=(A,β), [[∃(x:E(x)∧O(x)).L(x,x)]]J=T
通过 ∀(x:P(x)) 或者 ∃(x:P(x)) 的方式,我们相当于限制了 x 的论域。
Special quantified proposition
Claim: Suppose S is a set of symbols and J is an S-interpretation.
If [[∃xϕ]]J=F,
then
[[∀(x:ϕ).ψ]]J=T;
[[∃(x:ϕ).ψ]]J=F.
Remark: ∀xϕ and ∃xϕ is still legal proposition even if x does not occur in ϕ.
Interpreting informal proofs
Example 5.
Proof of ∀ε>0,∃N,∀n>N,n1<ε.
Given a fixed ε>0, let N=[ε1]+1 then for any n>N,
n1=n1<N1<ε11=ε.
Qed.
Proof step: In order to prove ∀ε>0,∃N,∀n>N,n1<ε, it suffices to prove: if ε>0 then ∃N,∀n>N,n1<ε.
Logic: If Φ does not talk about ε and Φ,ψ⊢χ then Φ⊢∀ε(ψ→χ).
Proof step: In order to prove ∃N,∀n>N,n1<ε, it suffices to prove ∀n>[ε1]+1,n1<ε.
Logic: If Φ⊢ψ[N↦t] then Φ⊢∃Nψ.
Example 6.
Proof of:
¬∃x∈N.∃y∈N.gcd(x,y)=1 and x2=2y2.
Suppose there exists x∈N and y∈N s.t. x2=2y2.
Thus, x must be an even number and we can assume x=2x0.
Now, we have y2=2x02.
Thus, y must be an even number two and we can assume y=2y0.
Therefore, gcd(x,y)=1.
Qed.
Proof step: In order to prove ¬∃x∈N.∃y∈N.gcd(x,y)=1 and x2=2y2, it suffices to prove that if x∈N, y∈N and x2=2y2 then gcd(x,y)=1.
Logic: If Φ does not talk about x and y, ψ1 does not talk about y, and Φ,ψ1,ψ2,ψ3⊢¬χ, then Φ⊢¬∃x(ψ1∧∃y(ψ2∧ψ3∧χ)).
Proof step: If x2=2y2, then x is an even number.
No logic. It is a math fact.
Logic (in the bigger picture): If Φ⊢ψ and Φ,ψ⊢χ, then Φ⊢χ.
Proof step: Because there exists x0∈N s.t. x=2x0, we can use x0 to represent this natural number in later proofs.
Logic: If neither Φ nor χ does mention x0, and Φ,ψ⊢χ, then Φ,∃x0ψ⊢χ.